Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37512669

RESUMO

This study aims to develop a 30 kHz/12 kW silicon carbide (SiC)/Si integrated hybrid power module (iHPM) for variable frequency drive applications, particularly industrial servo motor control, and, additionally, to theoretically and experimentally assess its dynamic characteristics and efficiency during operation. This iHPM integrates a brake circuit, a three-phase Si rectifier, and a three-phase SiC inverter within a single package to achieve a minimal current path. A space-vector pulse width modulation (SVPWM) scheme is used to control the inverter power switches. In order to reduce parasitic inductance and power loss, an inductance cancellation design is implemented in the Si rectifier and SiC inverter. The switching transients and their parasitic effects during a three-phase operation are assessed through an electromagnetic-circuit co-simulation model, by which the power loss and efficiency of the iHPM are estimated. The modeled parasitic inductance of the inverter is validated through inductance measurement, and the effectiveness of the simulated results in terms of switching transients and efficiency is verified using the experimental results of the double pulse test and open-loop inverter operation, respectively. In addition, the power loss and efficiency of the SiC MOSFET inverter are experimentally compared against those of a commercial Si IGBT inverter.

2.
Artigo em Inglês | MEDLINE | ID: mdl-23847751

RESUMO

The creation of nanostructures on polycrystalline silicon wafer surface to reduce the solar reflection can enhance the solar absorption and thus increase the solar-electricity conversion efficiency of solar cells. The self-masking reactive ion etching (RIE) was studied to directly fabricate nanostructures on silicon surface without using a masking process for antireflection purpose. Reactive gases comprising chlorine (Cl2), sulfur hexafluoride (SF6), and oxygen (O2) were activated by radio-frequency plasma in an RIE system at a typical pressure of 120-130 mTorr to fabricate the nanoscale pyramids. Poly-Si wafers were etched directly without masking for 6-10 min to create surface nanostructures by varying the compositions of SF6, Cl2, and O2 gas mixtures in the etching process. The wafers were then treated with acid (KOH:H2O = 1:1) for 1 min to remove the damage layer (100 nm) induced by dry etching. The damage layer significantly reduced the solar cell efficiencies by affecting the electrical properties of the surface layer. The light reflectivity from the surface after acid treatment could be significantly reduced to <10% for the wavelengths between 500 and 900 nm. The effects of RIE and surface treatment conditions on the surface nanostructures and the optical performance as well as the efficiencies of solar cells will be presented and discussed. The authors have successfully fabricated large-area (156 × 156 mm2) subwavelength antireflection structure on poly-Si substrates, which could improve the solar cell efficiency reproducibly up to 16.27%, higher than 15.56% using wet etching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...